Modul 5

Kommunikation und Verbindung mit Angehörigen der Gesundheitsberufe

Impressum

Dieses Modul wurde im Rahmen des Projekts E-HEALth Literacy (Akronym HEAL) entwickelt, das vom Erasmus+ Programm der Europäischen Kommission finanziert wird. Es handelt sich um eine KA2 Erasmus+ Strategische Partnerschaft mit der Referenz 2021-1-DE02-KA220-ADU-000026661. Die Verantwortung für den Inhalt dieses Moduls trägt allein der Verfasser; die Europäische Kommission haftet nicht für die weitere Verwendung der darin enthaltenen Angaben.

Datum: August 2023

Projektergebnis-Nr. PR2

Authoren / Ko-Authoren:

<u>Stiftung Digitale Chancen</u>: Dörte Stahl, Nenja Wolbers
<u>Asociacija "Viešieji interneto prieigos taškai":</u> Monika Arlauskaitė, Laura Grinevičiūtė
<u>IASIS NGO</u>: Athanasios Loules, Theodora Alexopoulou, Ilias - Michael Rafail
<u>Ynternet.org</u>: Leonor Afonso, Thanasis Priftis
<u>Simbioza Genesis, socialno podjetje</u>: Brigita Dane

Lizenz: Creative Commons Attribution-ShareAlike 4.0 International Ausgenommen von dieser Lizenz sind alle Nicht-Text-Inhalte wie Fotos, Grafiken und Logos

- 1. Telemedizin
- 2. Weitere digitale Kommunikationsmöglichkeiten
- 3. Weitere digitale Technologien, die eine zunehmend größere Rolle spielen

Erklärfilm Telemedizin (2:25) des Landesmedienzentrums Baden-Württemberg (LMZ)

https://www.youtube.com/watch?v=J2iUBvoq49Q

Telemedizin

- Gesundheitsdienstleistungen, die durch Informationsund Kommunikationstechnologie (IKT) erbracht werden
- Angehörige der Gesundheitsberufe und Patienten befinden sich nicht am selben Ort
- Interaktion zwischen Patienten, Angehörigen, medizinischem Fachpersonal und Ärzten zur Unterstützung von Diagnose, Behandlung oder Prävention
- Medizinische Daten und Informationen werden sicher in Form von Text, Ton, Bildern oder anderen Formen übertragen

Patient*in – Ärztin/Arzt

Telemedizin:

Beispiele

Patient*in und Pflegepersonal – Ärztin/Arzt

Patient*in und Begleitung – Ärztin/Arzt

Rettungsdienst / Notfallsanitäter und Patient*in – Ärztin/Arzt

Beispiele siehe z.B.: https://www.klinikum-oldenburg.de/zentren-kliniken/kliniken/universitaetsklinik-fuer-anaesthesiologie/-intensivmedizin/-notfallmedizin/-schmerztherapie/telemedizin/unsere-projekte

Wofür: Für wen: Barrieren:

Telemedizin:

Wofür und für wen kann sie sinnvoll sein?

Gemeinsam sammeln; konkrete Beispiele, falls Sie welche kennen:

Für welche Personen und in welchen Situation kann Telemedizin sinnvoll sein?

Was können Hinderungsgründe sein, um Telemedizin in Anspruch zu nehmen?

Telemedizin:

Wofür und für wen kann sie sinnvoll sein?

Wofür:

- Beratung
- Nachsorge (OP etc.)
- Abstimmung / Kontrolle bei längeren Behandlungen

•

Für wen:

- Eingeschränkte Mobilität
- LangeAnfahrtswege
- Terminlich wenig flexibel (Beruf, Familie ...)

•

Barrieren:

- Anwendungsund Bedienkenntnisse
- Internetzugang + Endgerät, auch finanzielle Barriere
- Internetverfügbarkeit

• • • •

Telemedizin:

Gut zu wissen

 eRezept und eDispensation (Ausgabe und Dokumentation v. Medikamenten) ermöglichen es EU-Bürger*innen, ihre Medikamente in einer Apotheke in einem beliebigen europäischen Land zu erhalten.

Dies geschieht nach der Online-Übertragung eines digitalen Rezepts aus ihrem Heimatland in das Reiseland.

Siehe:

https://www.ihe-d.de/mitglieder/eprescription/

www.derma2go.com

Hautarzt online: Diagnose, Therapieplan und Medikamente binnen Stunden,

aber:

Kostenübernahme in Deutschland durch private Krankenversicherung

2. Weitere digitaleKommunikations-möglichkeiten

Quelle: www.freepik.com

Lektion 2:

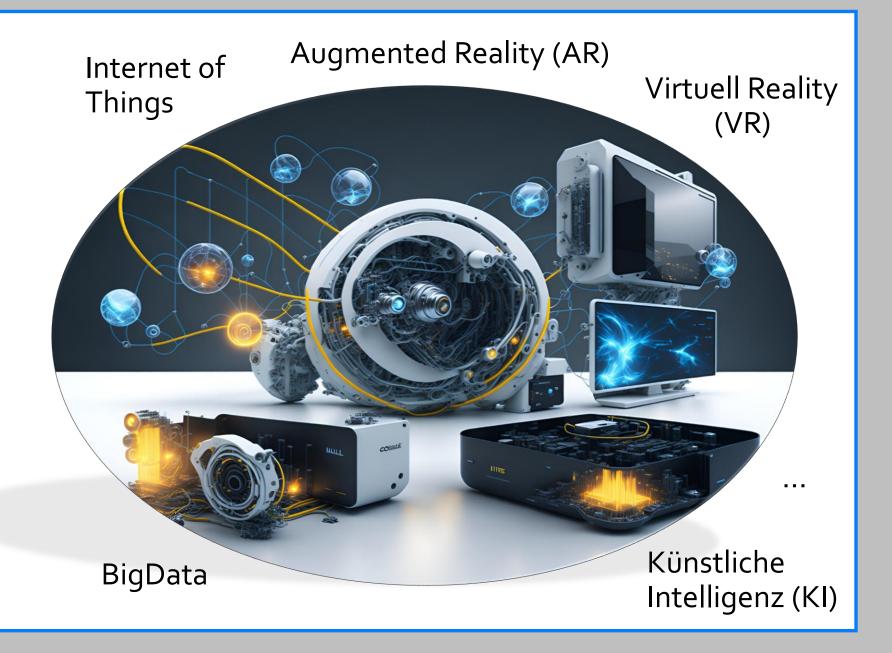
Weitere
digitale
Kommunikations
-möglichkeiten

- Telefon und E-Mail
- Online Chats (Mensch zu Mensch)
- Online Terminvereinbarung (Formular Website)
- Online-Terminvereinbarung
 via https://www.doctolib.de/ (App oder Website)
- Online-Portale der Krankenkassen, z.B. Teledoktor App https://www.barmer.de/unsere-leistungen/apps-skills/teledoktor-app

Weitere digitale Kommunikations -möglichkeiten:

ChatBots

Anwendung, die Kommunikation zwischen Mensch und Maschine ermöglicht.



- Nutzt oft Künstliche Intelligenz, um Eingaben zu verstehen (Text, Audio) und darauf zu reagieren, z.B. Fragen richtig beantworten
- Chatbots liegen große Datenmengen zugrunde, die sie auswerten:
 - Sie werden zunächst von Menschen trainiert, Menschen zu verstehen und richtige Auswertung (Antwort) vorzunehmen.
 - Im Verlauf lernen diese Systeme selbstständig weiter.

3. Weitere digitale Technologien, die eine zunehmend größere Rolle spielen

Internet of Things, IoT - Internet der Dinge

Weitere digitale
Technologien,
die eine
zunehmend
größere
Rolle spielen

Internet of Things, IoT -Internet der Dinge

- Vernetzung von "Dingen" mit dem Internet
- "Dinge": Produkte, Maschinen, Systeme, Sensoren, Implantate
- "Dinge" können eindeutig identifiziert werden (eigenen IP-Adresse)
- Daten werden zwischen den physischen Geräten ausgetauscht, analysiert und gesteuert (von Menschen oder Technologie)

Augenzwinkerndes Erklärvideo:

https://www.youtube.com/watch?v=ykRUz8qGnXE&t=388s

Beispiel: SmartHome

- Internetfähige Geräte wie Thermostate, Türklingeln,
 Rauchmelder etc., bilden ein Netzwerk.
- Daten werden zwischen diesen Geräten ausgetauscht (Temperatur-Sensor + Thermostat = Raumtemperatur)
- Nutzer*innen können die Geräte via App oder Website fernsteuern, z.B. Raumtemperatur ändern

Internet of Things, IoT -Internet der Dinge

In der Medizin – Beispiele:

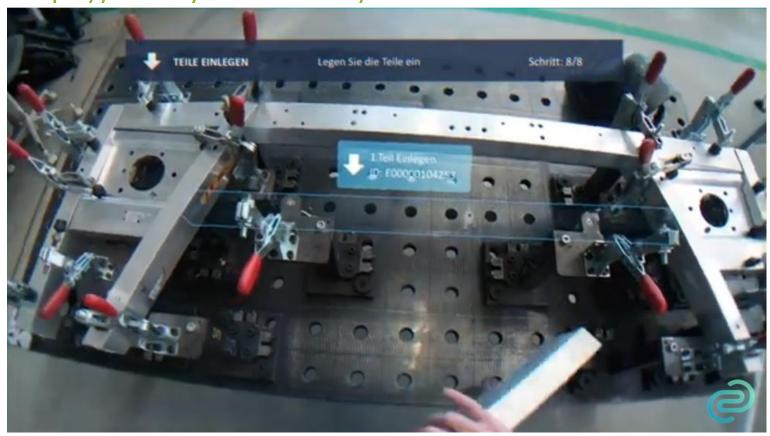
- Kontrolle von Patientendaten (Vitalparameter Sensoren) stationär und ambulant
- Überwachung von Implantaten wie Herzschrittmacher, Insulinpumpen;
 Beispiel: integrierter Sensor in Zahnimplantaten (https://dentalresourceasia.com/de/internet-of-things-iot-shaping-dentistry/)
- Krankenhaus-Logistik, Abläufe koordinieren:
 https://www.planet-wissen.de/video-smarte-krankenhaus-logistik-100.html

Weitere digitale Technologien, die eine zunehmend größere Rolle spielen

Augmented Reality (AR) – erweiterte Realität

Screenshot aus: https://www.youtube.com/watch?v=8NZPFyKK3lk

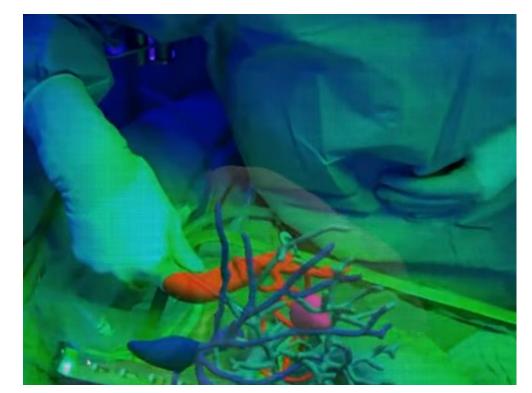
Augmented Reality


- Erweiterung der Realität (Smartphone, Tablet oder AR-Brille): virtuelle "Dinge" werden dreidimensional sichtbar und können (virtuell) bewegt werden. (Hologramm)
- Anwendungen u.a. in der Industrie (Maschinenentwicklung und -Wartung), im Marketing (Möbel im Wohnzimmer platzieren), Gaming (PokemonGo), Tourismus (historische Orte)

Augmented Reality

Beispiel: Augmented Reality in der Fertigung https://www.youtube.com/watch?v=7XRsZDhDd-M

Weitere Beispiele https://youtu.be/QeJyX8h7DZk?t=175



Augmented Reality

In der Medizin Beispiele

Bei Operationen:
 Erweiterung der
 Bildgebung über
 CT und MRT hinaus

https://www1.wdr.de/mediathek/videoaugmented-reality-im-op-100.html (bis - 01:01)

 In der Ausbildung (Das Herz in die Hand nehmen)

https://www.youtube.com/watch?v=8NZPFyKK3lk

Virtuell Reality (VR) – virtuelle Realität

Weitere digitale
Technologien,
die eine
zunehmend
größere
Rolle spielen

Virtuell Reality (VR)

- Sich mit einer VR-Brille in eine komplett andere "Welt" begeben und dort agieren (bewegen, sprechen …)
- Die virtuelle Welt wird durch die VR-Brille in Kombination mit Sensoren und Kopfhörern als realer Raum empfunden.
- Anwendungen:
 Unterhaltung / Spiele, Marketing / Verkauf (z.B. Immobilien od. Gelände besichtigen), Ausbildung / Lernen (Flugsimulatoren, Feuereinsatz-Training, Sprachen lernen "vor Ort", Funktionen von Maschinen lernen, in dem man sich in einer Maschine bewegt, Reise durch den Körper …)

Virtuell Reality

In der Medizin – Beispiele:

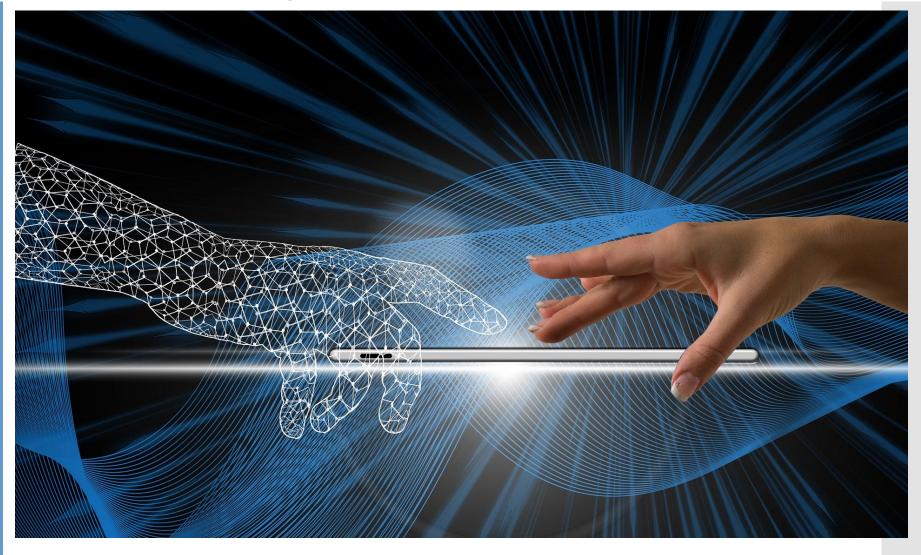
- Medizinische Ausbildung (Simulationen): https://www.youtube.com/watch?v=gH6mqbewPew
- Für Patient*innen während einer Operation: https://www.youtube.com/watch?v=Z86McpFEwy0
- Hilfe für Schlaganfallpatient*innen: https://www.ndr.de/nachrichten/schleswig-holstein/Das-Gehirn-austricksen-Mit-VR-Brillen-fit-nach-Schlaganfall,vrbrillen102.html
- Behandlung von Phobien und posttraumatischen Belastungsstörungen (PTBS): https://www.barmer.de/gesundheit-verstehen/mensch/gesundheit-2030/zukunft-gesundheitswesen/virtual-reality-in-der-medizin-1055912#1
 Virtual Reality gegen Schmerzen-1055912

Big Data (ist ein Begriff, keine Technologie)

Weitere digitale
Technologien,
die eine
zunehmend
größere
Rolle spielen

Big Data

Datafizierung


- Sehr große Datenmengen, die sehr schnell entstehen und inhaltlich vielfältig sind
- Sie können von Computern und Programmen analysiert werden und für uns in verständliche Informationen umgewandelt werden, z.B.: menschliche Vorlieben und voraussichtliche Handlungen, Unwettervorhersagen, Diagnostik und Therapie in der Medizin ...
- https://www.youtube.com/watch?v=X_FiBBCSXp4

Künstliche Intelligenz - KI

Weitere digitale
Technologien,
die eine
zunehmend
größere
Rolle spielen

Künstliche Intelligenz

- Ziel:
 Menschliche Wahrnehmung, menschliches Handeln und menschliches Lernen durch "Maschinen" nachbilden
- Computer sollen eigenständig Probleme lösen: mit Menschen kommunizieren, Tätigkeiten korrekt verrichten, bei denen es Wahlmöglichkeiten gibt, z.B. Übersetzungen, Texte und Bilder erkennen und erstellen, autonomes Fahren ...
- Eine Voraussetzung sind selbstlernende Algorithmen (Anweisungen, die zu einem bestimmten Ziel führen soll = Rechenoperation)
- Siehe https://www.youtube.com/watch?v=sDt5bTQBJis

Künstliche Intelligenz

- KI erkennt Muster anhand wiederkehrender Daten, z.B.
 spitze Ohren, ein längerer Schwanz, bestimmte, erkennbare Pfotenabdrücke = Katze
- Je mehr Daten, desto besser / exakter werden die Ergebnisse
- Neue Informationen werden mit Objekten (mit Mustern) verglichen, die bekannt sind (so arbeitet auch unser Gehirn) uns so in das System einsortiert / von ihm verarbeitet.
- Je nach Aufgabe arbeiten Algorithmen unterschiedlich; ChatGBT (kommuniziert mit Menschen, erstellt u.a. Texte) arbeitet z.B. mit der Wahrscheinlichkeit des nächsten Wortes (Ich gehe in die Küche um ...) und mit wechselseitigen Beziehungen von Wörtern (Park: Bänke, Wiese, Bäume ... Entspannung ...).

Künstliche Intelligenz

In der Medizin – Beispiele:

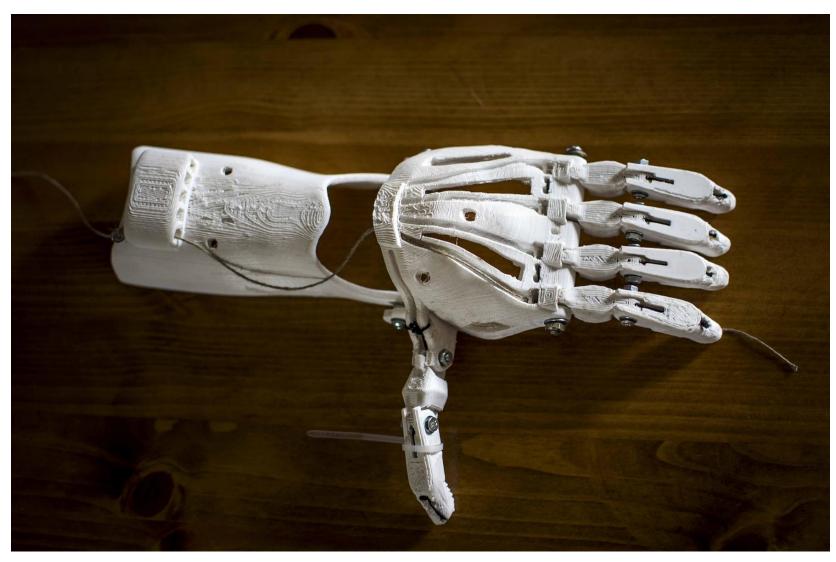
- Bildgebende Verfahren wie Röntgenbilder,
 Computertomographien (CT), Netzhaut-Scans:
 Erkennung / Analyse / Hinweise auf Erkrankungen
- Früherkennung z.B. von Sepsis
- Einsatz bei Operationen, auch in Verbindung z.B. mit Augmented Realitymit

Siehe:

Wie Kl uns in der Medizin hilft:

https://www.ardmediathek.de/video/planet-schule/wie-ki-uns-in-der-medizin-hilft/wdr/Y3JpZDovL3N3ci5kZS9hZXgvbzE4NDM4NDM

Künstliche Intelligenz in der Medizin:


https://www.youtube.com/watch?v=Ul6rBMIKUOM

https://www.annasleben.de/snippet/algorithmen-und-ki-in-der-medizin-beispiele-aus-der-praxis/

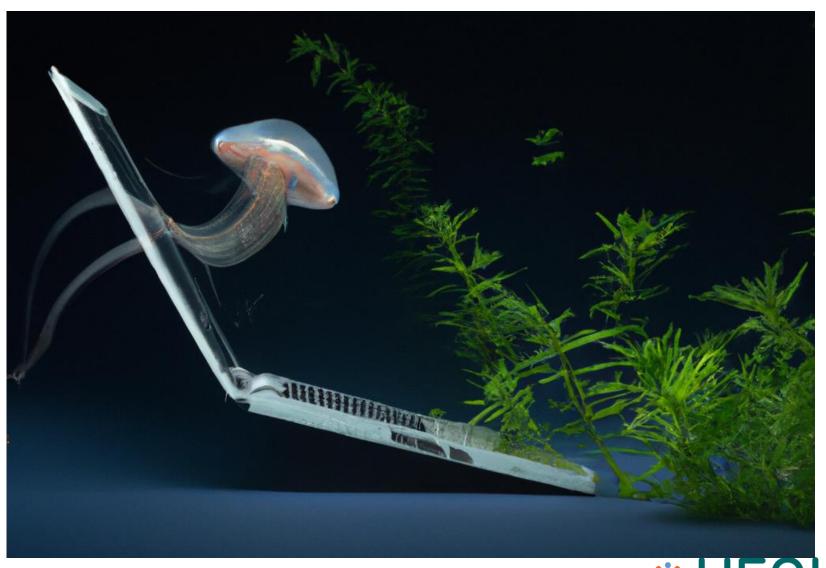
3D Druck

Weitere digitale Technologien, die eine zunehmend größere Rolle spielen

3D Druck

- Herstellung von Prothesen, Implantaten (auch Hörgeräte, Zähne) etc.
 Vorteil z.B. Passgenauigkeit
- zur Herstellung von medizinischen Geräten, die sensible Operationen erleichtern, wie Operationsschablonen
- Siehe:

https://www.planetwissen.de/technik/computer_und_roboter/dreidimensional er-druck/dreidimensionaler-druck-medizin-102.html


https://www.3dnatives.com/de/3d-druck-in-der-medizin-170720181/#

Sensoren und Rechnerleistung (Hardware)

Weitere digitale
Technologien,
die eine
zunehmend
größere
Rolle spielen

Weitere digitale Technologien, die eine zunehmend größere Rolle spielen

Sensoren und Rechnerleistung (Hardware)

Verschiedene Einsatzmöglichkeiten von Sensoren in der Medizin

https://www.youtube.com/watch?v=43-oNzhBC7I

Beispiel: Sensoren, die Lungenfunktionen / Atmung überwachen; werden dazu in Beatmungsgräte eingebaut

https://www.youtube.com/watch?v=Q0Hc3sAa2xI

Vorteile digitaler Möglichkeiten

- Zugänglichkeit
- maßgeschneiderte Maßnahmen für die Nutzer*innen
- Befähigung der Nutzer*innen (Eigenverantwortung)
- Kosteneffizienz, Möglichkeit der Kostensenkung
- Anonymität und Vertraulichkeit der Nutzer*innen
- besseres Gesundheitsverhalten
- ergänzt die Informationen der Ärzt*innen
- Unterstützung durch die Gemeinschaft (community support)
- mehr Sicherheit für Patienten durch weniger medizinische Fehler

Source: Nievas Soriano et ale (2019) Health: advantages, disadvantages and guiding principles for the future, https://www.researchgate.net/publication/334409444 eHealth advantages disadvantages and guiding principles for the future Preprint

Nachteile digitaler Möglichkeiten

- Bedenken hinsichtlich der Qualität der verfügbaren Gesundheitsinformationen (insbesondere im Internet)
- nicht unbedingt leicht verständliche Informationen und Schwierigkeiten bei der Beurteilung, ob die Informationen für die Nutzer*innen geeignet sind
- Schwierigkeiten beim Zugang zu elektronischen Gesundheitsinformationen aufgrund der digitalen Kluft
- Risiko unerwarteter unerwünschter Wirkungen
- Bedenken hinsichtlich Privatsphäre und Sicherheit
- Stress oder Ängste bei der Suche nach Gesundheitsinformationen
- ethische und rechtliche Bedenken

Leitprinzipien für die Zukunft elektronischer / digitaler Gesundheitsdienste

- Verbesserung der E-Health-Kompetenz der Bürger*innen
- Ausbildung von Gesundheitsdienstleistern und deren Einbindung in die Entwicklung und Bereitstellung von E-Health Anwendungen
- Untersuchung und Verbesserung der Benutzerfreundlichkeit von E-Health-Interventionen
- Untersuchung der Wirksamkeit und der Qualität von E-Health
- Suche nach Möglichkeiten zur Verringerung der digitalen Kluft
- Anpassung von E-Health-Maßnahmen an die Bedürfnisse der Nutzer*innen
- Untersuchung von Kosten, Wirksamkeit und Nachhaltigkeit
- ethische Aspekte berücksichtigen (Standards dafür entwickeln)

Source: Nievas Soriano et ale (2019) Health: advantages, disadvantages and guiding principles for the future, https://www.researchgate.net/publication/334409444 eHealth advantages disadvantages and guiding principles for the future Preprint

Quellen und Nachweise

Projekt-Koordination

Stiftung Digitale Chancen Chausseestr. 15 10115 Berlin https://www.digitale-chancen.de/

Bildnachweise

- Folie 2: https://pixabay.com/de/illustrations/social-media-sozial-marketing-5187243/ WebTechExperts
- Folie 9: www.freepik.com
- Folie 10: https://pixabay.com/de/vectors/call-center-kundendienst-7040784/ SlashRTC
- Folie 13: https://pixabay.com/de/vectors/netzwerk-jot-internet-der-dinge-782707/ jeferrb
- Folie 15: https://pixabay.com/de/illustrations/schlau-smarthome-smartphone-heimat-7159625/ geralt
- Folie 21: https://pixabay.com/de/photos/vr-virtuelle-realit%c3%a4t-brille-3411378/ dlohner
- Folie 24: https://pixabay.com/de/illustrations/world-wide-web-bin%c3%a4ren-system-7104406/ <u>geralt</u>
- Folie 26: https://pixabay.com/de/illustrations/partikel-smartphone-hand-wellen-7146718/ geralt
- Folie 30: https://pixabay.com/de/photos/prosthetisch-proteza-3d-drucken-1273183/ splotramienny
- Folie 32: KI-generiert durch DALL-E
- Folie 34: https://pixabay.com/de/photos/architektur-geb%C3%A4ude-infrastruktur-2577515/ StockSnap

